
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3630 160

Implementation of High Speed Multiplier using

Fast Parallel Prefix Adder

Pramod Karale
1
, R.D Daruwala

2

Department of Electrical Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai, India1, 2

Abstract: With the rapid advancement in information technology, there is a huge demand for high speed processors.

This has led to design of advanced processors capable of performing all mathematical computations at a faster speed.

Multiplication is one such dominating computational technique which plays an important role as far as speed is

concerned. In this paper, design and implementation of multiplier using Vedic mathematics named as Urdhva

Triyakbhyam which incorporates Kogge Stone adder is presented. Adder is a parallel prefix derived from carry look-

ahead adder which is the faster. This multiplier is implemented on Xilinx Board is shown to have exhibited high

performance in terms of speed in the simulations.

Keywords: Urdhva Triyakbhyam, Kogge Stone adder, Xilinx Board.

I. INTRODUCTION

As the need of high speed processors is increasing, need to

design fast multipliers is the key challenge required to be

met. The speed of any processor is greatly depends on the

computational speed of the functional blocks used in the

system design. Multiplier is one of the key hardware blocks

used in almost all the general purpose processors and the

digital signal processors. Nowadays various multipliers are

available like combinational multipliers, array multipliers,
booth multiplier.

The two- bit multiplication M x N involves formation of N

partial products of M bits each thereby summing the

appropriately shifted partial products, subsequently to

produce M+N bit result [1]. In this work, the high speed

multiplier [1] is developed by Vedic Mathematics which is

based on Vertical and Crosswise structure known as

Urdhva Tiryakbhyam (UT) along with Kogge Stone adder.

Urdhva Tiryakbhyam Sutra is an alternate method to

perform multiplication is referred from [1] which is
applicable to all cases.

The architecture of multiplier includes the Kogge Stone

adder. Peter M. Kogge and Harold S. Stone [6] developed

the Kogge Stone adder .The Kogge Stone adder is a

parallel prefix form of carry look-ahead adder. The time

complexity for the carry signals generated is O (log n),

thereby making it as a widely considered one because of its

fast nature of performance [2]. This design is therefore

commonly adopted in industry for achieving better

performance and the same has been produced in this work

as well.

The organization of the remaining research work is as

follows: The organization of the remaining research work

is as follows: Section II reviews the related works of

various design implementations of multipliers. In Section

III, design and implementation method are explained.

Simulations and results are discussed in Section IV.

Finally, conclusion is given in Section V.

II. RELATED WORKS

Previous work reveals that various multiplier designs and

implementations have been proposed to enhance the speed

of processors. Parallel multipliers were developed way

back in 1960. The configuration of this multiplier [2] [3]

[4] consist of rectangular array of identical combinational

cells that generate and also sum the partial product bits.

They are also known as Array multipliers. For unsigned N

× N multiplication, an array multiplier defines two basic
functions, partial product generation and summations

which are combined. In this case, N2 + N - 1 cells are

connected to produce a multiplier (where N2 contain an

AND gate for partial product generation and N - 1 cells

containing a full adder used for summing).N lower product

bits are generated whereas the upper N bits of the product

are formed by using a carry-propagate adder, which is a

ripple carry adder.

Due to the regularity of their structures, array multipliers

are the most frequently implemented structures. The
literature also there exists another class of parallel

multipliers which incorporates strategic application of

counters or compressors [2] that has the capability to

reduce a matrix of partial product bits to two words. These

two words are then summed using a fast carry-propagate

adder to generate the product. Hence this class of parallel

multiplier is known as column compression multiplier.

They are considered as the fastest multiplier as the delay is

directly proportional to the logarithm of the multiplier and

word length.

According to Thomas & Callaway et.al. [15] Column
compression multipliers are more power efficient than

array multipliers. In 1964, Wallace [14] introduced a

scheme called as Wallace Tree which is a tree of carry save

adders that perform summation of partial product bits for

fast multiplication. Wallace's method was later improvised

by Dadda [16] where a counter placement strategy was

introduced that required fewer counters in the partial

product reduction stage at the cost of a larger carry-

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3630 161

propagate adder. For both methods, the total delay is

proportional to the logarithm of the operand word-length.
Other partial product reduction methods have been

proposed since the work of Wallace and Dadda. While

maintaining the fast speed of the Wallace and Dadda

design the Windsor methods were later introduced which

were based on strategic utilization of (3, 2) and (2, 2)

counters aimed to improve area and layout.

In order to perform multiplication with 2's complement

operands using array multiplier, booth algorithm [12] can

be employed. This algorithm computes the partial products

by examining two multiplicand bits at a time, but provides

no advantage in terms of area reduction and delay. Better
delays, though can be achieved by implementing a higher

radix modified Booth algorithm [13]. Another method [17]

which increases the maximum column height by two,

handles 2's complement operands in an array multiplier.

This may lead to an additional stage of partial product

reduction, thereby increasing overall delays.

III. DESIGN AND IMPLEMENTATION

The algorithm for multiplication is adopted from Vedic

Mathematics called as Urdhva Tiryakbhyam (UT). In the
architecture of multiplier the partial products are added

using Kogge Stone adder. The proposed architecture of 16

x 16 bit Vedic Multiplier is as shown below.

Fig.1: Architecture of Multiplier

The basic architecture is comprehended from the base

paper [5] and modified to obtain expected output as well

as speed.

The architecture design consists of simple and smaller

blocks to synthesize a 16 x 16 bit multiplier. For example

a 8 x 8 bit multiplier block can be synthesized by using
four 4 x 4 multiplier blocks along with three 8-bit Kogge

Stone adders, similarly a 4 x 4 bit multiplier can be

Fig.2: Basic 2 x 2 Vedic Multiplier Block

designed using four 2 x 2 multiplier along with three 4-bit

Kogge Stone adders. Functionality of each block is

verified using Xilinx simulation software.

Fig.3: 4-bit Kogge Stone adder

The internal processing of Kogge Stone adder involves the

following steps:

 Preprocessing: Generate (pi ,gi) from (Ai , Bi)

pi => Ai xor Bi (1)

gi => Ai and Bi (2)

 Carry look ahead network: Generate (Pi:pre, Gi:pre) from

(gi, pi) and (gpre, ppre)

Pi:pre => pi and ppre (3)

Gi:pre= > gi or (pi and gpre) (4)

 Post processing: Generate Sumi from(pi ,Carryi-1)

Sumi = pi xor Carryi-1 (5)

For the implementation of multiplier, the code is written in

VHDL and simulated in Xilinx Software and later

implemented on Xilinx Board.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 6, June 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3630 162

Fig.4: RTL Schematic

IV. SIMULATION AND RESULTS

A result has been drawn out from the simulation

experiment performed with Kogge Stone adder in terms of

computation time which is as shown in Table 1

Table 1: Comparison of delay times of different Kogge

Stone adder.

Kogge Stone Adder (KSA) Time(ns)

4-bit 1.179

8-bit 1.971

16-bit 3.457

Along with the Kogge Stone adder, the processing time of

the above Multiplier has been measured which essentially
give a clear indication of the high speed performance of

Vedic multiplier using Kogge Stone adder which is as

shown in Table 2

Table 2: Performance evaluation of Vedic multiplier

Vedic

multiplier

using_Kogge

Stone adder

LUT’S

Used

Total

LUT’S

Present

%

area

Utiliza

-tion

Time

(ns)

 4-bit 27 53200 0.051 3.718

 8-bit 140 53200 0.26 6.179

16-bit 715 53200 1.329 10.817

Fig.5: Simulation Result 16x16 Vedic Multiplier

The Simulation result for 16 bit multiplier is shown in Fig

5 in which input A =>34953 and input B =>39306 is taken
and result out =>1373862618 is obtained.

V.CONCLUSION

In this paper high speed architecture for 16 x 16 bit
multiplication is proposed by extracting the features of

Vedic multiplier based on UT method and Kogge Stone

adder. As Kogge-Stone adder is used as the main building

block in the proposed multiplier architecture design, the

total delay time and the execution time is considerably

reduced, indicating a high speed performance of the

multiplier and also able to reduce the area utilization factor

drastically by using a specific Xilinx Simulation Software

and Xilinx board.

REFERENCES

[1] R. Anjana, B. Abishna, M. S. Harshitta, E. Abhishek, V.

Ravichandra and M. S. Suma, “Implementation of Vedic Multiplier

using Kogge Stone Adder,” IEEE International Conference on

Embedded Systems, pp. 28-31, 2014.

[2] P. P. Zode and R. B. Deshmukh, “Fast Modular Multiplication using

Parallel Prefix Adder,” IEEE conference on Emerging Technology

Trends in Electronics, Communication and Networking (ET2ECN),

pp. 1-4, 2014.

[3] N. Anand, G. Joseph, J. S. Raj and P. Jayakrishnan, “Implementation

of adder structure with fast carry adder network for high speed

processor,” IEEE conference on Green Computing, Communication

and Conservation of Energy (ICGCE), pp. 188-190, 2013.

[4] M. Khanand and K. Han, “An optimized network selection and

handover triggering scheme for heterogeneous self-organized

wireless networks,” Mathematical Problems in Engineering, Article

ID173068, pp. 11, 2014.

[5] M. Poornima, Shivaraj Kumar Patil, Shivukumar, K. P. Shridhar and

H. Sanjay, “Implementation of Multiplier using Vedic Algorithm,”

MVJCE, Bangalore, May 2013.

[6] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient

solution of a General class of Recurrence equation,” IEEE

transactions on Computers, Vol.22 No.8, pp. 786-792, August 1973.

[7] P. Ramanathan, P. T. Vanathi, “A Novel Logarithmic Prefix Adder

with Minimized Power Delay Product,” Journal of Scientific &

Industrial Research, Vol. 69, pp. 17-20, January 2010.

[8] R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of

ACM. La Jolla, vol.27, no.4, pp. 831-838, October 1980.

[9] David Harris, “A Taxonomy of parallel prefix networks,”

Proceedings of the 37th Asilomar Conference on Signals, Systems

and Computers Pacific Grove, California, pp. 2213-2217, November 2003.

[10] O. J. Bedrij, “Carry-Select Adder,” IRE Transaction on Electronics

Computers, vol.EC11, pp. 340-346, 2011.

[11] D. H. K. Hoe, C. Martinez, and J. Vundavalli, “Design and

Characterisation of Parallel Prefix Adders using FPGAs,” IEEE 43
rd

Southern Synopsium on System Theory, pp. 168-172, March 2011.

[12] D. Purushottam, Chidgupkar and M. T. Karad, “The

Implementation of Vedic Algorithms in Digital Signal Processing,”

Global Journal of Engineering. Education, vol.8, No.2, pp. 153-157, 2004.

[13] A. D. Booth, “A signed binary multiplication Technique,” Quarterly

Journal of Mechanics and Applied Mathematics, vol.4, pp. 236-240, 1951.

[14] S. R. Kuang, J. P. Wang and C.-Y. Guo, “Modified booth

multipliers with a regular partial product array,” IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 404–

408, May 2009.

[15] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactio

ns on Electronic Computers, vol. EC-13 ,no. 1, pp. 14–17, Feb. 1964.

[16] T. K. Callaway and E. E. Swatzlander, “Optimizing multipliers for

WSI,” International Conference on Wafer Scale Integration, pp. 85-94, 1973.

[17] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,

vol. 34, pp. 349-356, August 1965.

[18] C.R. Baugh and B. A. Wooley, “A two’s complement parallel array

multiplication algorithm,” IEEE Transactions on Computers, vol. C-

22, pp. 1045-1047, 1973.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7036226
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7036226
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815876
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815876
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815876

